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Abstract: Decision-making in earthquake crises requires rapid coordination, informed 
analysis, and ethical responsibility. This study explores the comparative strengths of artificial 
intelligence (AI) and human judgment in such contexts through a simulated earthquake 
response scenario. The simulation was conducted as part of the 2022 Civil Protection Exercise 
Plan of the City of Velika Gorica, supported by Velika Gorica University of Applied Sciences 
and the Directorate of Civil Protection, with the goal of strengthening the city’s disaster 
response readiness. The case examines how AI could contribute to operational efficiency and 
pattern recognition, while also recognizing the enduring importance of human expertise in 
ethical decision-making and adaptive leadership. Findings indicate that a hybrid model 
combining AI-driven tools with human oversight offers the most resilient framework for crisis 
response. The study underscores the need for continued development of integrated decision-
support systems grounded in practical exercises and cross-sector collaboration. 
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1. INTRODUCTION 
 
Effective decision-making during disaster scenarios, especially earthquakes, remains a central 
challenge for crisis management authorities. These high-pressure situations demand rapid 
situational analysis, resource allocation, and communication across multiple agencies all under 
conditions of severe uncertainty and operational disruption (Boin et al., 2005). Traditionally, 
such decisions have relied heavily on human judgment, drawing from experience, intuition, 
and institutional memory. However, advances in artificial intelligence (AI) have introduced 
new possibilities for supporting or even augmenting human decision-making in real-time 
disaster response (Turoff et al., 2004; Comfort et al., 2004). 
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1.1 Background and significance 
This paper is a conceptual and application-oriented analysis. It does not present or analyze 
empirical data from any exercise. It discusses where AI systems could support human decision-
making in earthquake response, using the 2022 Velika Gorica Civil Protection exercise only as 
contextual illustration. AI technologies, particularly those utilizing real-time data analytics, 
geospatial mapping, and predictive modeling, have shown promise in improving response 
speed and efficiency. However, AI systems frequently struggle to comprehend complex social 
contexts and subtle human interactions, exercise ethical judgment, or adapt flexibly to 
unstructured or unforeseen developments. These qualities remain the domain of human crisis 
leaders, who must navigate not only logistical constraints but also emotional, political, and 
moral dimensions of disaster response (Özcan, 2021; Coombs, 2015). 
 
1.2 Aim and scope 
The aim is to map potential AI decision-support functions to key decision points in earthquake 
response and to explain how these functions can complement human judgment. This article 
offers conceptual mapping and does not collect, process, or compare primary data; the Velika 
Gorica field civil protection exercise serves solely as contextual grounding for illustrative 
decision points, not as an analyzable dataset. 
Research questions: 

1. What are the strengths and limitations of AI-based decision-support systems in 
simulated earthquake response? 

2. In what ways does human expertise continue to provide value in managing disaster 
scenarios? 

3. How can AI and human decision-making be effectively integrated to improve overall 
crisis response capacity? 

 
 
2. CONCEPTUAL FRAMEWORK 
 
Earthquake response places decision-makers under severe time pressure while information is 
incomplete, contested, or rapidly changing. Public leaders must coordinate diverse 
organizations, justify actions to citizens and media, and manage ethical trade-offs that affect 
vulnerable groups. These conditions amplify known bottlenecks: cognitive overload, hesitancy, 
centralization that slows operational throughput, and friction at the interfaces between agencies 
and volunteers. Empirical narratives from the 2011 Van earthquake in Turkey describe early 
coordination failures due to the absence of a shared incident command system, over-centralized 
approvals that delayed field action, and difficulties integrating spontaneous volunteers 
dynamics that illustrate how institutional structure and political accountability shape on-the-
ground decision speed and quality (Özcan, 2021; Boin, et al., 2005; Coombs, 2015). 
 
Public sector crisis models therefore conceptualize decision-making not as a single act but as 
a sequence of tasks sense-making, deciding, implementing, communicating meaning, and 
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learning performed under uncertainty and organizational constraint. Even well-informed 
choices face the practical challenge of materializing across heterogeneous agencies that resist 
information sharing or have incompatible coordination styles. Non-decisions (delays, deferrals, 
evasions) are endemic and can be as consequential as explicit choices. These insights situate 
“human factors” at the core of crisis governance: leadership style, delegation practices, and 
communication discipline affect outcomes as much as technical capacity. They also clarify why 
any computational aid must be embedded in organizational routines that respect legal 
mandates, political legitimacy, and professional ethics (Boin et al., 2005; Coombs, 2015; 
Özcan, 2021). 
 
2.1 AI-based decision-support possibilities 
Against this backdrop, artificial intelligence can contribute in speed, scale, and consistency to 
several crisis tasks. Decision-support systems can fuse multi-source inputs—seismic feeds, 
remote sensing, crowdsourced reports, infrastructure layers into shared operational pictures and 
prioritized task lists. Continues work on emergency information systems emphasizes that 
coordination improves when information timeliness, relevance, and accessibility are raised for 
all actors, reducing effort and enabling earlier convergence on workable plans (Comfort, et al., 
2004). In parallel, the dynamic emergency response management information system 
(DERMIS) design principles argue for dynamic, distributed, and user-configurable information 
flows that support collaboration across organizational boundaries rather than top-down 
command alone (Turoff, et al., 2004). 
 
For logistics and resource allocation, relief-chain models using fault-tree analysis and Failure 
Mode, Effects and Criticality Analysis (FMECA) identify failure points from assessment 
through mobilization, transport, staging, and last-mile delivery. Such models make explicit the 
dependencies that often remain tacit in practice and thereby surface levers for optimization. 
When paired with modern data sources, they can guide priority setting for assets, routes, and 
staffing; detect bottlenecks early; and support “what-if” exploration of cascading effects. In 
large-scale events, this systematic perspective helps ensure that the visibility provided by 
dashboards translates into decisions that move supplies and services to the right places at the 
right times (Kumar & Havey, 2013). 
 
AI can also triage information overload. Natural-language processing may summarize field 
reports, classify citizen requests, and flag anomalies; computer vision can accelerate building-
damage assessments from aerial imagery; predictive models can estimate level of infrastructure 
damage or shelter demand under alternative assumptions. Yet these capabilities remain 
bounded by training data, feature engineering, and interface design. They require continuous 
validation, explicit uncertainty communication, and governance that constrain unintended 
consequences. Prior research cautions that computational efficiency without human 
interpretive capacity risks misalignment with local conditions and social priorities (Comfort et 
al., 2004; Turoff et al., 2004). 
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2.2 Integrating human and AI contributions 
A pragmatic approach is a human-in-the-loop architecture in which AI systems propose 
humans dispose. Information systems supply common operating pictures, ranked options, and 
traceable rationales; human authorities arbitrate ethical dilemmas, negotiate inter-agency trade-
offs, and own accountability for final choices. This design aligns with public-sector crisis 
models that stress fast but defensible decisions and with organizational lessons from prior 
earthquakes, which show the costs of over-centralization and the need for disciplined 
delegation and coordination. In practice, the integration challenge is less about model accuracy 
than about workflow: who sees what, when, and with what authority to act. Effective 
configurations clarify roles, encode escalation rules, and build audit trails that support learning 
after the event (Boin et al., 2005; Özcan, 2021; Turoff et al., 2004; Comfort et al., 2004). 
 
For communication, AI tools may help maintain a single authoritative voice by filtering 
misinformation, harmonizing updates, and routing messages to appropriate spokespeople, but 
strategic messaging, empathy, and legitimacy remain human responsibilities. Literature on 
crisis communication underscores that unmanaged information flows can deepen crises, and 
that trust depends on known relationships and credible messengers. AI therefore supports but 
does not substitute for operational plans developed before the event and executed by trained 
officials during response (Coombs, 2015; Özcan, 2021). 
 

2.3 Implications for local earthquake exercises 

When mapped to the functional blocks of a local earthquake exercise, alerting and sense-
making, assessment and routing, triage and surge management, logistics and staging, public 
information, and after-action learning AI contribute primarily to accelerating situational 
awareness, stabilizing coordination through shared data, and optimizing resource flows. 
Human decision-makers retain primacy where conflicts arise, where political license is 
required, and where improvisation must reconcile competing mandates or community 
expectations. The practical objective is a hybrid arrangement in which AI raises the floor of 
routine performance and humans navigate the ceiling of ambiguity, ethics, and legitimacy 
(Comfort et al., 2004; Boin et al., 2005; Kumar & Havey, 2013; Özcan, 2021). 

The frameworks and models referenced here provide the theoretical basis for identifying 
potential AI functions applicable to local crisis exercises, rather than for evaluating actual 
performance. This conceptual stance foregrounds design choices such as data governance, role 
definitions, interface design, and transparent record-keeping that determine whether AI support 
reduces friction or introduces new failure modes. It also foresees next steps for empirical work: 
simulation exercises that measure coordination latency, logistics throughput, and 
communication coherence with and without AI assistance, under the oversight of public 
authorities responsible for ethical and legal compliance (Turoff et al., 2004; Comfort et al., 
2004; Kumar & Havey, 2013). 
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3. METHODOLOGICAL CONTEXT 

 
The 2022 Civil Protection Exercise of the City of Velika Gorica is used solely as an illustrative 
frame that anchors examples in realistic operations and organizational roles. This paper draws 
conceptually on the structure and objectives of the 2022 Velika Gorica Civil Protection 
Exercise to illustrate how existing AI-based models could align with real operational goals. No 
original data was recorded, processed, or analyzed. Exercise involved local emergency services 
and civil protection stakeholders with logistics support from national level (Civil Protection 
Directorate -Ministry of Interior.)  

3.1 Exercise as illustrative frame 
Publicly described features of the exercise provide a practical scaffold for discussing where AI 
systems might assist crisis managers. The scenario described a destructive early-morning 
earthquake affecting population, critical infrastructure, mobility, utilities, and public services 
across Velika Gorica, with activation of local coordination structures and a field command 
post. Within this operational picture, the paper treats the exercise elements as contextual 
anchors not as datasets to show how information flows, logistics, triage, and communication 
tasks could be supported by AI-enabled tools under the authority of human decision-makers. 
 
3.2 Conceptual mapping logic 
The mapping follows a simple logic tailored to practice: 

• Identify decision points implied by the objectives. For example, issuing alerts requires 
situation recognition and channel selection; evacuation requires corridor selection and 
dynamic rerouting; triage requires prioritization under surge; logistics requires 
allocation under constraints; public communication requires message harmonization 
and rumor control. These points reflect standard emergency-management tasks that 
recur in municipal earthquake response. 

• Associate each decision point with candidate AI functions described in prior models. 
Examples include sensor/image fusion for situational awareness, traffic and network 
flow algorithms for routing, predictive scoring for resource allocation, natural-language 
processing for report summarization, and dashboarding for cross-agency visibility. The 
paper references these models as design templates rather than as tools that were 
executed in the exercise. 

• Specify human oversight and organizational preconditions. For each AI function, the 
mapping enumerates decision rights, escalation rules, interoperability expectations, 
uncertainty communication, and audit requirements that ensure legality, legitimacy, and 
ethical appropriateness remain with human authorities. This preserves accountability 
and aligns with the public-sector mandate of the civil protection system. 

 
3.3 Boundaries and non-claims 
The approach intentionally avoids methodological forms associated with empirical research. It 
does not propose sampling frames, instrumentation plans, reliability checks, or inferential tests. 
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It does not compare measured outcomes across “human-only” and “AI-assisted” conditions. 
Any contrasts discussed in later sections are illustrative propositions that show how specific 
AI functions might influence timeliness, coordination, or information quality if embedded in 
the workflows represented by the exercise objectives. Where the paper references the exercise, 
it is to make the conceptual mapping concrete e.g., by locating an AI dashboard within a field 
command-post workflow or by trying triage support to medical surge management not to infer 
performance effects. 
 
3.4 Candidate AI model classes and input data by function 
To remove ambiguity about which models operate on which data, the table below enumerates 
plausible model families and typical inputs for each functional area. These are exemplars, not 
prescriptive choices, and should be piloted under local governance and validation (Sidahmed, 
2024). 
 
3.4.1 Situational awareness and damage assessment 

• Model classes. U-Net/FPN/PSPNet for semantic segmentation; Mask R-CNN for 
instance-level extraction of collapsed elements; lightweight detectors such as 
YOLOv8/Detectron2 for corridor blockage cues in UAV streams; two-stage pre/post 
change-detection and domain-adaptation pipelines for transfer across sensors and 
locales (Kızılay, 2024; Cheng, 2024; Zheng, 2024). 

• Data inputs. Orthomosaics from UAVs, high-resolution satellite imagery, SAR for 
night/cloud cover, baseline cadastral/GIS layers, and dynamic road-network status 
feeds (OECD, 2025; Zheng, 2024). 

 

3.4.2 Resource allocation and logistics optimization 

• Model classes. Reinforcement learning for dynamic dispatch and staging; multi-period 
optimization with equity constraints; multi-agent RL for distributed coordination, 
embedded on top of fault-tree and FMECA structures that pinpoint leverage points 
along the relief chain (Yu, 2021; Ahmad, 2025; Kumar i Havey, 2013). 

• Data inputs. Staging-point inventories, zone-level demand forecasts, transport-graph 
status, crew availability, shelter capacity, replenishment lead times, and disruption 
indicators from the local relief network (Kumar i Havey, 2013; Yu, 2021). 

 

3.4.3. Public communication and coordination support 
• Model classes. Fine-tuned BERT-family classifiers for incident relevance and priority; 

abstractive/extractive summarization for field logs and citizen reports; taxonomy-
guided event detection and misinformation flags to standardize routing across agencies 
(Khallouli, 2025; He, 2025; Carvalho, 2025). 

• Data inputs. Structured incident logs, transcribed radio/field notes, geotagged social-
media streams, and operator annotations for supervised updates (Carvalho, 2025; He, 
2025). 
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3.4.4 Governance, transparency, and learning 

• Design choices. Role-based access, mandatory decision logs, explicit uncertainty 
displays, provenance tracking, and data-protection controls aligned with public-sector 
audit requirements; DSS patterns that enable explainability and traceability across 
agencies (Comfort, et al., 2004; Turoff, et al., 2004; OECD, 2025). 

 

4. APPLICATION AREAS OF AI IN EARTHQUAKE RESPONSE 

 
4.1 Situational awareness and damage assessment 
AI can accelerate early situational awareness by fusing heterogeneous data streams into a 
common operating picture. Computer-vision models applied to drone or satellite imagery can 
flag probable structural damage, blocked corridors, and emerging fire risks. Combined with 
sensor inputs and basic geospatial layers, these models can generate rapid heatmaps of impact 
and accessibility that guide initial tasking and alerting. Prior work on information flows in 
rapidly evolving disasters shows that timeliness, relevance, and shared access to curated 
information improve coordination and reduce duplicative effort, which are central goals for 
any AI-enabled dashboard. 
 
4.2 Resource allocation and logistics optimization 
Once the operating picture stabilizes, AI can support logistics by identifying high-leverage 
interventions across the relief chain. Fault-tree and Failure Mode, Effects and Criticality 
Analysis (FMECA) frameworks make interdependence explicit from assessment through 
mobilization, transport, staging, and last-mile delivery. Coupled with current demand estimates 
and infrastructure status, this perspective enables algorithmic prioritization of supplies, routing 
around degraded networks, and proactive detection of bottlenecks that often go unnoticed until 
they cascade. In large events, optimization informed by these models can reduce stockouts at 
critical nodes, align staff and assets with likely surge, and support “what-if” planning for 
aftershocks or secondary hazards. 
 
4.3 Public communication and coordination support 
Earthquake response routinely suffers when coordination is ad hoc, approvals are over-
centralized, and volunteers operate outside a common system. Narratives from prior crises 
document how the absence of an incident command structure, combined with upward transfer 
of routine decisions, produced delays and public frustration. These dynamics imply clear 
opportunities for AI tools that triage and route information rather than replace authority: 
natural-language processing can summarize field reports, rank incoming citizen requests, and 
surface anomalies; cross-agency dashboards can expose task ownership and status to reduce 
duplication; and alerting assistants can harmonize messages for designated spokespersons to 
maintain a single authoritative voice. The target is disciplined coordination with humans in 
charge, not message automation at the expense of legitimacy. 
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4.4 Ethical and leadership considerations 
AI systems should augment, not supplant, public leadership in ethically charged decisions, such 
as triage, evacuation prioritization, and risk communication. Crisis governance models 
emphasize sense-making under uncertainty, rapid yet accountable decisions, and coordinated 
implementation across heterogeneous organizations. In this setting, AI contributes auditable 
recommendations with uncertainty cues, while human authorities adjudicate trade-offs, ensure 
procedural fairness, and retain accountability. Over-centralization that slows field activities, or 
delegation without oversight, can both degrade outcomes; effective designs therefore pair AI 
transparency with clear decision rights, escalation rules, and post-event learning mechanisms. 
 

Table 1: Human and AI-supported decision-making 

Dimension Human Decision-Making AI-Supported Decision-Making 

Timeliness Moderate to delayed response due to 
communication constraints and manual 
assessments. 

High-speed data processing 
enables near-instantaneous 
situational awareness (Comfort 
et al., 2004). 

Accuracy Based on expertise and judgment, 
occasional errors and overlaps in task 
allocation. 

High consistency in analysis and 
task distribution; minimizes 
redundancy (Kumar & Havey, 
2013). 

Adaptability Strong improvisational skills; effective in 
unpredictable human behavior (Boin et 
al., 2005). 

Limited to training data; less 
capable of responding to 
unexpected human dynamics. 

Coordination Dependent on interpersonal networks; 
sometimes siloed and inconsistent. 

Centralized dashboards ensure 
inter-agency synchronization 
and transparency (Turoff et al., 
2004). 

Ethical/Social Judgment High sensitivity to ethical priorities and 
social needs (e.g., vulnerable groups) 
(Özcan, 2021). 

Lacks emotional intelligence and 
ethical discernment cannot 
contextualize moral choices. 

 

This functional reframing positions AI as a catalyst for speed, scale, and consistency in 
information processing and logistics, while reserving normative judgment, political legitimacy, 
and stakeholder engagement for human leaders. The categories above align with the operational 
tasks commonly activated in municipal earthquake exercises and can be used to scope pilot 
integrations that preserve accountability while testing where AI support yields measurable 
gains in coordination latency, throughput, and message coherence. 
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5. CONCLUSION AND RECOMMENDATIONS 
 

This paper proposes that integrating AI decision-support functions with human oversight may 
strengthen earthquake crisis response. The proposition is conceptual: AI is mapped to decision 
points where speed, scale, and consistency in information processing and logistics matter, while 
ethical judgment, legitimacy, and accountability remain with human authorities. AI can 
contribute via data fusion, pattern recognition, and relief-chain optimization; humans arbitrate 
trade-offs, coordinate heterogeneous agencies, and lead public communication under 
uncertainty. 
 
To operationalize this framework, implement narrowly scoped AI functions within controlled 
exercises, for example, imagery-based damage triage or routing optimizers under clearly 
defined decision rights; then evaluate their contribution by systematically tracking coordination 
latency, corridor clearance times, stockout rates at staging points, and cross-agency message 
coherence before considering wider deployment. Establish governance by design with human-
in-the-loop protocols, model-output traceability, and explicit uncertainty cues, ensuring tools 
reinforce incident command and designated spokesperson roles rather than supplanting them. 
Build organizational readiness through targeted training on delegation, information-sharing 
agreements, and structured integration of spontaneous volunteers to avoid delays from over-
centralization and ad hoc coordination. Prioritize interoperability and data stewardship policies 
that enable responsible access, retention, and interagency exchange even under degraded 
communications. Implement rigorous after-action learning by auditing AI-supported 
workflows post-exercise to refine protocols and model scopes without eroding legitimacy or 
ethical standards. 
 
These steps provide a practical path to empirically test the framework and determine where AI 
augmentation yields measurable gains while preserving human control over consequential 
decisions. 
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